Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[2-(1H-1,3-Benzodiazol-2-yl)ethyl]-1,3-oxazolidin-2-one

Giovanna Brancatelli,^a* Francesco Nicoló,^a Sara De Grazia,^b Anna Maria Monforte^b and Alba Chimirri^b

^aDipartimento di Chimica Inorganica Chimica Analitica e Chimica Fisica, Universitá degli Studi di Messina, Via Salita Sperone 31, I-98166 Vill, S. Agata - Messina, Italy, and ^bDipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, 98168, Messina, Italy

Correspondence e-mail: gbrancatelli@unime.it

Received 18 February 2011; accepted 1 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.089; data-to-parameter ratio = 12.6.

In the title compound, C₁₂H₁₃N₃O₂, the dihedral angle between the oxazolone ring and the benzimidazole unit is 45.0 (5)°, exhibiting a staggered conformation at the $C\alpha - C\beta$ bond. In the crystal, a strong $N-H \cdots N$ hydrogen bond links the molecules into a C(4) chain along the c axis while a C-H···O hydrogen-bonding interaction generates a C(5) chain along the a axis, i.e. perpendicular to the other chain.

Related literature

For the therapeutic activity of benzimidazole and oxazolidinone derivatives, see: Niño et al. 2001; Siva Kumar et al. 2010; Zappia et al. 2007. For the drug linezolid [systematic name (S)-N-({3-[3-fluoro-4-(morpholin-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)acetamide], see: Brickner et al. (2008). For asymmetry of the exocyclic angles in oxazolone rings, see: Grassi et al. (2001). For the structures of benzimidazole and oxazolidine, see: Totsatitpaisan et al. (2008); Wouters et al. (1997).

Experimental

Crystal data $C_{12}H_{13}N_3O_2$

 $M_{\rm m} = 231.25$

Monoclinic, $P2_1/c$	Z = 4
a = 6.0940 (2) Å	Mo $K\alpha$ radiation
b = 18.1570 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 10.0740 (3) Å	T = 296 K

organic compounds

b = 18.15/0 (6) A	$\mu = 0.10 \text{ mm}^{-1}$
c = 10.0740 (3) Å	T = 296 K
$\beta = 90.696 (1)^{\circ}$	$0.51 \times 0.43 \times 0.21 \text{ mm}$
V = 1114.59 (6) Å ³	
Data collection	
Bruker APEXII CCD	1951 independent reflections
diffractometer	1830 reflections with $I > 2\sigma(I)$
34135 measured reflections	$R_{\rm int} = 0.021$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.033$	155 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
1951 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1−H1···N8 ⁱ C11−H11A····O14 ⁱⁱ	0.86 0.97	2.08 2.53	2.8959 (13) 3.2876 (16)	158 135

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the University of Messina and the MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2341).

References

Brickner, S. J., Barbachyn, M. R., Hutchinson, D. K. & Manninen, P. R. (2008). J. Med. Chem. 51, 1981-1990.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Grassi, G., Bruno, G., Risitano, F., Foti, F., Caruso, F. & Nicolò, F. (2001). Eur. J. Org. Chem. pp. 4671-4678.
- Niño, V. M., Daza, C. E. & Tello, M. (2001). J. Chem. Inf. Comput. Sci. 41, 495-504
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siva Kumar, R., Kumarnallasivan, P., Vijai Anand, P. R., Pradeepchandran, R., Jayaveera, K. N. & Venkatnarayanan, R. (2010). Pharma Chem. 2, 100-108. Totsatitpaisan, P., Tashiro, K. & Chirachanchai, S. (2008). J. Phys. Chem. A,
- 112, 10348-10358.
- Wouters, J., Ooms, F. & Durant, F. (1997). Acta Cryst. C53, 895-897.
- Zappia, G., Gacs-Baitz, E., Delle Monache, G., Misiti, D., Nevola, L. & Botta, B. (2007). Curr. Org. Synth. 4, 81-135.

supplementary materials

Acta Cryst. (2011). E67, o1083 [doi:10.1107/S1600536811012256]

3-[2-(1H-1,3-Benzodiazol-2-yl)ethyl]-1,3-oxazolidin-2-one

G. Brancatelli, F. Nicoló, S. De Grazia, A. M. Monforte and A. Chimirri

Comment

Heterocyclic compounds containing 5- or 6-membered rings are important for their diverse biological activities. In particular, the chemistry of oxazolidinone and benzimidazole has received considerable attention owing to their synthetic and biological importance.

Benzimidazole and oxazolidinone derivatives have been studied for the treatment of different pathologies. Their scaffold has been incorporated into a wide variety of therapeutically interesting compounds that show antibacterial, antifungal, antiviral, antineoplastics and cholinergic activity among others (Niño *et al.*, 2001; Siva Kumar *et al.*, 2010; Zappia *et al.*, 2007). Furthermore, the introduction in the pharmaceutical market of Linezolid, an oxazolidin-2-one-based antibacterial drug, attracted the interest of the scientists on this scaffold (Brickner *et al.*, 2008). On the basis of some common properties, such as antibacterial activity, of these two classes of heterocyclic compounds, in this study we synthesized the title molecule, in which the benzimidazole ring is linked to an oxazolidinone scaffold, with the aim to obtain a compound having two different moieties in the same molecular entity, and then a synergism of activity.

The one-pot synthetic route employed to obtain the title compound is depicted in Figure 1. Treatment of the commercially available 2-(2-aminoethyl)-benzimidazole dihydrochloride with dibromoethane and potassium carbonate gave the desired product. The proposed mechanism for the synthesis is shown in Figure 2. The nucleophilic attack of the 2-(2-aminoethyl)-benzimidazole primary amine function on the dibromoethane is followed by oxazolidinone ring formation. An excess of potassium carbonate is necessary both to create the basic medium for the *N*-alkylation and for the formation of the oxazolidinone moiety.

The molecule crystallizes in the centrosymmetric $P2_1/c$ space group. The asymmetric unit contains one molecule, shown in Figure 3. The dihedral angle between the oxazolone ring and the benzimidazole unit is 45.0 (5)°, exhibiting a staggered conformation at the C α —C β bond. The carbonyl fragment displays pronounced asymmetry at the *exo*-cyclic angles, being N12—C13—O14 and O14—C13—O15 of 128.4 (1)° and 121.9 (1)°, respectively, because of both electronic and steric factors due to the presence of different atoms bound to C13 (Grassi *et al.*, 2001). The dimensions within the benzimidazole and the oxazolidine moieties are in excellent agreement with those found in the benzimidazole and oxazolidine crystal structures (Totsatitpaisan *et al.*, 2008; Wouters *et al.*, 1997).

Packing analysis of the crystal lattice indicates that the tridimensional molecular arrangement is ruled by many H-bonding interactions. A strong H-bond N1—H1…N8 gives rise to a molecular chain [C(4)] along the *c* axis (Figure 4). Another H-bonding interaction C11—H11…O14 generates a chain [C(5)] along the *a* axis, perpendicular to the previous one.

Experimental

A solution of dibromoethane (3 mmol, 0.258 ml) in ethyl acetate (2 ml) was added over 10 minutes to a stirred mixture of 2-(2-aminoethyl)-benzimidazole dihydrochloride (1 mmol, 0.234 g), potassium carbonate (10 mmol, 1.38 g), ethyl acetate

(5 ml) and water (2 ml). After the reaction mixture was refluxed for 36 h, the two phases were separated and the aqueous layer was extracted with ethyl acetate (2 x 5 ml). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated. Elution with a mixture of chloroform and methanol (99:1) gave the title molecule as colourless crystals (yield: 30%). ¹H-NMR (CDCl₃, 300 MHz) δ 3.30 (t, *J* = 6.59, 2H, CH₂), 3.61 (t, *J* = 6.71, 2H, CH₂), 3.83 (t, *J* = 6.59, 2H, CH₂), 4.28–4.34 (t, *J* = 6.71, 2H, CH₂), 7.22–7.25 (m, 4H, Ar), 7.56 (bs, 1H, NH).

Refinement

H atoms were located in a difference Fourier map and placed in idealized positions using the riding-model technique, with C—H = 0.93 and 0.97Å for aromatic H and methylene H, respectively, and N—H = 0.86Å, and with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figures

Fig. 1. Synthesis reaction scheme of the title compound.

Fig. 2. Mechanism proposed for the synthesis of the title compound.

Fig. 3. *ORTEP* drawing of the title molecule. Non H-atoms represented as displacement ellipsoids are plotted at the 50% probability level, while H atoms are shown as small spheres of arbitrary radius. In this view the staggered conformation around the $C\alpha$ — $C\beta$ bond is visible.

Fig. 4. Arrangement of the molecules in perpendicular chains. The chain [C(5)] ruled by the C11—H11A···O14 interaction prolongs the crystal packing along the *a* axis; the other one [C(4)] generated by the N1—H1···N8 interaction is extended along the *c* axis. Dotted lines indicate H-bonding interactions.

3-[2-(1H-1,3-benzodiazol-2-yl)ethyl]-1,3-oxazolidin-2-one

Crystal data

 $C_{12}H_{13}N_{3}O_{2}$ $M_{r} = 231.25$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 6.0940 (2) Å b = 18.1570 (6) Å c = 10.0740 (3) Å F(000) = 488 $D_x = 1.378 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9799 reflections $\theta = 2.3-30.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K

$\beta = 90.696 \ (1)^{\circ}$	Prism, colourless
V = 1114.59 (6) Å ³	$0.51 \times 0.43 \times 0.21 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	$R_{\rm int} = 0.021$
graphite	$\theta_{\text{max}} = 25^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
φ and ω scans	$h = -7 \rightarrow 7$
34135 measured reflections	$k = -21 \rightarrow 21$
1951 independent reflections	$l = -11 \rightarrow 11$
1830 reflections with $I > 2\sigma(I)$	

Refinement

methods

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 0.2758P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1951 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
155 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008)
0 constraints	Extinction coefficient: 0.031 (3)
Primary atom site location: structure-invariant direct	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	0.68193 (19)	0.18737 (6)	0.48419 (11)	0.0360 (3)
C3	0.8441 (2)	0.14478 (8)	0.54393 (13)	0.0495 (3)
H3	0.8494	0.1375	0.6353	0.059*
C4	0.9971 (2)	0.11369 (8)	0.46129 (15)	0.0556 (4)
H4	1.1078	0.0845	0.4978	0.067*
C5	0.9903 (2)	0.12476 (8)	0.32465 (15)	0.0523 (4)
Н5	1.0971	0.1032	0.2722	0.063*
C6	0.8292 (2)	0.16686 (7)	0.26555 (12)	0.0452 (3)
H6	0.825	0.1739	0.1741	0.054*
C7	0.67213 (19)	0.19869 (6)	0.34697 (11)	0.0350 (3)
C9	0.40064 (19)	0.25761 (6)	0.42951 (11)	0.0352 (3)
C10	0.2094 (2)	0.30701 (7)	0.44963 (13)	0.0439 (3)
H10A	0.1152	0.286	0.5167	0.053*
H10B	0.1252	0.3104	0.3675	0.053*
C11	0.2802 (2)	0.38413 (7)	0.49276 (13)	0.0439 (3)

supplementary materials

0.1517	0.4119	0.5187	0.053*
0.3766	0.3802	0.5698	0.053*
0.6099 (2)	0.43147 (7)	0.38402 (14)	0.0457 (3)
0.4669 (3)	0.49106 (10)	0.20459 (17)	0.0682 (5)
0.4673	0.4673	0.1184	0.082*
0.455	0.5439	0.1917	0.082*
0.2788 (3)	0.46309 (11)	0.28639 (17)	0.0693 (5)
0.193	0.5033	0.3221	0.083*
0.1835	0.4308	0.235	0.083*
0.50576 (16)	0.22534 (6)	0.53358 (9)	0.0379 (3)
0.4689	0.2281	0.6156	0.045*
0.49276 (16)	0.24297 (6)	0.31510 (9)	0.0376 (3)
0.39262 (16)	0.42375 (6)	0.38915 (11)	0.0440 (3)
0.74742 (17)	0.40717 (7)	0.45882 (13)	0.0730 (4)
0.66295 (17)	0.47348 (6)	0.27768 (11)	0.0606 (3)
	0.1517 0.3766 0.6099 (2) 0.4669 (3) 0.4673 0.455 0.2788 (3) 0.193 0.1835 0.50576 (16) 0.4689 0.49276 (16) 0.39262 (16) 0.74742 (17) 0.66295 (17)	$\begin{array}{ccccccc} 0.1517 & 0.4119 \\ 0.3766 & 0.3802 \\ 0.6099 (2) & 0.43147 (7) \\ 0.4669 (3) & 0.49106 (10) \\ 0.4673 & 0.4673 \\ 0.455 & 0.5439 \\ 0.2788 (3) & 0.46309 (11) \\ 0.193 & 0.5033 \\ 0.1835 & 0.4308 \\ 0.50576 (16) & 0.22534 (6) \\ 0.4689 & 0.2281 \\ 0.49276 (16) & 0.24297 (6) \\ 0.39262 (16) & 0.42375 (6) \\ 0.74742 (17) & 0.40717 (7) \\ 0.66295 (17) & 0.47348 (6) \\ \end{array}$	0.1517 0.4119 0.5187 0.3766 0.3802 0.5698 $0.6099 (2)$ $0.43147 (7)$ $0.38402 (14)$ $0.4669 (3)$ $0.49106 (10)$ $0.20459 (17)$ 0.4673 0.4673 0.1184 0.455 0.5439 0.1917 $0.2788 (3)$ $0.46309 (11)$ $0.28639 (17)$ 0.193 0.5033 0.3221 0.1835 0.4308 0.235 $0.50576 (16)$ $0.22534 (6)$ $0.53358 (9)$ 0.4689 0.2281 0.6156 $0.49276 (16)$ $0.42375 (6)$ $0.38915 (11)$ $0.74742 (17)$ $0.40717 (7)$ $0.45882 (13)$ $0.66295 (17)$ $0.47348 (6)$ $0.27768 (11)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C2	0.0400 (6)	0.0367 (6)	0.0314 (6)	-0.0057 (5)	0.0019 (5)	-0.0004 (5)
C3	0.0553 (8)	0.0536 (8)	0.0394 (7)	0.0006 (6)	-0.0045 (6)	0.0092 (6)
C4	0.0496 (8)	0.0541 (8)	0.0630 (9)	0.0100 (6)	-0.0035 (7)	0.0054 (7)
C5	0.0466 (7)	0.0547 (8)	0.0558 (8)	0.0051 (6)	0.0086 (6)	-0.0087 (6)
C6	0.0471 (7)	0.0533 (8)	0.0352 (6)	-0.0018 (6)	0.0067 (5)	-0.0050 (5)
C7	0.0379 (6)	0.0370 (6)	0.0300 (6)	-0.0057 (5)	0.0017 (5)	-0.0015 (4)
C9	0.0360 (6)	0.0383 (6)	0.0315 (6)	-0.0071 (5)	0.0025 (5)	-0.0013 (5)
C10	0.0346 (6)	0.0494 (7)	0.0478 (7)	-0.0031 (5)	0.0067 (5)	-0.0006 (6)
C11	0.0395 (7)	0.0483 (7)	0.0440 (7)	0.0040 (5)	0.0050 (5)	-0.0045 (5)
C13	0.0392 (7)	0.0457 (7)	0.0521 (7)	-0.0010 (5)	0.0014 (6)	-0.0063 (6)
C16	0.0762 (11)	0.0666 (10)	0.0618 (10)	0.0016 (8)	0.0012 (8)	0.0156 (8)
C17	0.0548 (9)	0.0894 (12)	0.0634 (10)	-0.0038 (8)	-0.0136 (7)	0.0212 (9)
N1	0.0433 (6)	0.0459 (6)	0.0246 (5)	-0.0031 (4)	0.0056 (4)	-0.0011 (4)
N8	0.0386 (5)	0.0459 (6)	0.0283 (5)	-0.0023 (4)	0.0020 (4)	0.0011 (4)
N12	0.0341 (5)	0.0451 (6)	0.0527 (6)	0.0013 (4)	-0.0023 (5)	0.0048 (5)
O14	0.0389 (6)	0.0963 (9)	0.0835 (8)	0.0045 (5)	-0.0103 (5)	0.0128 (7)
O15	0.0534 (6)	0.0681 (7)	0.0605 (6)	-0.0114 (5)	0.0104 (5)	0.0016 (5)

Geometric parameters (Å, °)

C2—N1	1.374 (2)	C10—H10A	0.97
C2—C3	1.387 (2)	C10—H10B	0.97
C2—C7	1.398 (2)	C11—N12	1.447 (2)
C3—C4	1.378 (2)	C11—H11A	0.97
С3—Н3	0.93	C11—H11B	0.97
C4—C5	1.391 (2)	C13—O14	1.204 (2)
C4—H4	0.93	C13—N12	1.333 (2)
C5—C6	1.374 (2)	C13—O15	1.357 (2)
С5—Н5	0.93	C16—O15	1.432 (2)
C6—C7	1.3934 (17)	C16—C17	1.508 (2)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	С6—Н6	0.93	C16—H16A	0.97
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7—N8	1.391 (2)	C16—H16B	0.97
C9-NI 1.355 (2) C17-H17A 0.97 C9-C10 1.487 (2) C17-H17B 0.97 C10-C11 1.2569 (19) N1-H1 0.86 N1-C2-C3 132.72 (11) N12-C11-H11A 109.1 N1-C2-C7 105.08 (10) C10-C11-H11B 109.1 C4-C3-C2 116.75 (12) C10-C11-H11B 109.1 C4-C3-H3 121.6 H1A-C11-H11B 107.8 C2-C3-H3 121.6 H1A-C13-O15 121.9 (1) C3-C4-C5 121.75 (13) 014-C13-O15 109.6 (1) C3-C4-H4 119.1 N12-C13-O15 109.6 (1) C5-C4-H4 119.1 N15-C16-C17 106.2 (1) C6-C5-C4 121.43 (13) O15-C16-H16A 110.5 C5-C6-C7 117.89 (12) C17-C16-H16B 10.5 C5-C6-C7 117.89 (12) C17-C16-H16B 10.5 C5-C6-C7 117.89 (12) C17-H17A 11.5 N8-C7-C2 109.70 (10) C16-C17-H17A 11.5 N8-C7-C2 109.70 (10)<	C9—N8	1.315 (2)	C17—N12	1.430 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N1	1.355 (2)	C17—H17A	0.97
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C9—C10	1.487 (2)	С17—Н17В	0.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C11	1.5269 (19)	N1—H1	0.86
$\begin{split} & \text{NI}-\text{C2}-\text{C7} & \text{I05.08} (10) & \text{C10}-\text{C11}-\text{H11A} & \text{I09.1} \\ & \text{C3}-\text{C2}-\text{C7} & \text{I22.20} (12) & \text{N12}-\text{C11}-\text{H11B} & \text{I09.1} \\ & \text{C4}-\text{C3}-\text{C2} & \text{I16.75} (12) & \text{C10}-\text{C11}-\text{H11B} & \text{I09.1} \\ & \text{C4}-\text{C3}-\text{H3} & \text{I21.6} & \text{O14}-\text{C13}-\text{N12} & \text{I28.4} (1) \\ & \text{C3}-\text{C4}-\text{C5} & \text{I21.75} (13) & \text{O14}-\text{C13}-\text{O15} & \text{I29.6} (1) \\ & \text{C3}-\text{C4}-\text{C5} & \text{I21.75} (13) & \text{O14}-\text{C13}-\text{O15} & \text{I29.6} (1) \\ & \text{C3}-\text{C4}-\text{H4} & \text{I19.1} & \text{N12}-\text{C13}-\text{O15} & \text{I09.6} (1) \\ & \text{C5}-\text{C4}-\text{H4} & \text{I19.1} & \text{O15}-\text{C16}-\text{C17} & \text{I06.2} (1) \\ & \text{C6}-\text{C5}-\text{C4} & \text{I21.43} (13) & \text{O15}-\text{C16}-\text{H16A} & \text{I10.5} \\ & \text{C4}-\text{C5}-\text{H5} & \text{I19.3} & \text{C17}-\text{C16}-\text{H16B} & \text{I10.5} \\ & \text{C5}-\text{C6}-\text{C7} & \text{I17.89} (12) & \text{C17}-\text{C16}-\text{H16B} & \text{I08.7} \\ & \text{C7}-\text{C6}-\text{H6} & \text{I21.1} & \text{N12}-\text{C17}-\text{C16} & \text{I01.44} (13) \\ & \text{N8}-\text{C7}-\text{C6} & \text{I30.32} (11) & \text{N12}-\text{C17}-\text{H17A} & \text{I11.5} \\ & \text{N8}-\text{C7}-\text{C6} & \text{I30.32} (11) & \text{N12}-\text{C17}-\text{H17A} & \text{I11.5} \\ & \text{N8}-\text{C7}-\text{C2} & \text{I09.70} (10) & \text{C16}-\text{C17}-\text{H17B} & \text{I11.5} \\ & \text{N8}-\text{C9}-\text{N1} & \text{I12.8} (1) & \text{C16}-\text{C17}-\text{H17B} & \text{I11.5} \\ & \text{N8}-\text{C9}-\text{N1} & \text{I12.8} (1) & \text{C16}-\text{C17}-\text{H17B} & \text{I11.5} \\ & \text{N8}-\text{C9}-\text{C10} & \text{I23.31} (1) & \text{C9}-\text{N1}-\text{C2} & \text{107.50} (9) \\ & \text{C9}-\text{C10}-\text{C11} & \text{113.8} (10) & \text{C9}-\text{N1}-\text{C1} & \text{104.90} (10) \\ & \text{C9}-\text{C10}-\text{C11} & \text{113.8} (10) & \text{C9}-\text{N1}-\text{C1} & \text{104.90} (10) \\ & \text{N1}-\text{C2}-\text{C1} & \text{104.90} (10) \\ & \text{N1}-\text{C2}-\text{C1} & \text{104.90} (10) \\ & \text{N2}-\text{C1}-\text{C1} & \text{104.90} (10) \\ & \text{N1}-\text{C2}-\text{C1} & \text{104.90} (10) \\ & \text{N1}-\text{C2}-\text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & \text{C1} & \text{C1} \\ & \text{C1} & C$	N1—C2—C3	132.72 (11)	N12—C11—H11A	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C7	105.08 (10)	C10-C11-H11A	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7	122.20 (12)	N12—C11—H11B	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C2	116.75 (12)	C10-C11-H11B	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	121.6	H11A—C11—H11B	107.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	121.6	O14—C13—N12	128.4 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5	121.75 (13)	O14—C13—O15	121.9(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—H4	119.1	N12—C13—O15	109.6 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—H4	119.1	O15—C16—C17	106.2 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—C4	121.43 (13)	O15—C16—H16A	110.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С5—Н5	119.3	С17—С16—Н16А	110.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—H5	119.3	O15—C16—H16B	110.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7	117.89 (12)	С17—С16—Н16В	110.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С6—Н6	121.1	H16A—C16—H16B	108 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C6—H6	121.1	N12-C17-C16	101 45 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N8—C7—C6	130.32 (11)	N12-C17-H17A	111.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N8—C7—C2	109 70 (10)	C16—C17—H17A	111.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C7-C2	119 98 (11)	N12-C17-H17B	111.5
N8-C9-C10125.8 (1)H17A-C17-H17B109.3N1-C9-C10121.3 (1)C9-N1-C2107.50 (9)C9-C10-C11111.88 (10)C9-N1-H1126.2C9-C10-H10A109.2C2-N1-H1126.2C11-C10-H10A109.2C9-N8-C7104.90 (10)C9-C10-H10B109.2C13-N12-C11113.11 (12)C11-C10-H10B109.2C13-N12-C11124.01 (11)H10A-C10-H10B107.9C17-N12-C11122.74 (11)N1-C2-C3-C4179.30 (13)C3-C2-N1-C9-179.94 (13)C7-C2-C3-C4-0.01 (19)C7-C2-N1-C9-0.55 (12)C2-C3-C4-C50.4 (2)N1-C9-N8-C7-0.69 (13)C3-C4-C5-C6-0.5 (2)C10-C9-N8-C7176.10 (11)C4-C5-C6-C70.3 (2)C6-C7-N8-C9-179.88 (12)C5-C6-C7-N8-179.73 (12)C2-C7-N8-C90.32 (13)C5-C6-C7-N80.15 (13)015-C13-N12-C17177.42 (16)N1-C2-C7-N8179.62 (11)014-C13-N12-C111.5 (2)N1-C2-C7-C6-179.68 (11)015-C13-N12-C11-177.92 (11)C3-C2-C7-N8179.62 (11)014-C13-N12-C11-177.92 (11)C3-C2-C7-C6-0.20 (18)C16-C17-N12-C111.5 (2)N1-C2-C7-C6-0.20 (18)C16-C17-N12-C11-178.09 (13)N1-C9-C10-C11-97.20 (14)C16-C17-N12-C13-101.12 (15)C9-C10-C11-97.20 (14)C16-C17-N12-C13-101.12 (15)C9-C10-C11-97.20 (14)C16-C17-N12-C13-101.12 (15)C9-C10-C11-97.20 (N8—C9—N1	112.8 (1)	C16—C17—H17B	111.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N8-C9-C10	125.8 (1)	H17A—C17—H17B	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C9-C10	121.3(1)	C9-N1-C2	107 50 (9)
ConstructionInfinition (16)ConstructionInfinition (17)C9-C10-H10A109.2C2-N1-H1126.2C11-C10-H10B109.2C9-N8-C7104.90 (10)C9-C10-H10B109.2C13-N12-C17113.11 (12)C11-C10-H10B109.2C13-N12-C11124.01 (11)H10A-C10-H10B107.9C17-N12-C11122.74 (11)N12-C11-C10112.67 (10)C13-O15-C16109.01 (11)N1-C2-C3-C4179.30 (13)C3-C2-N1-C9-179.94 (13)C7-C2-C3-C4-0.01 (19)C7-C2-N1-C9-0.55 (12)C2-C3-C4-C50.4 (2)N1-C9-N8-C7-0.69 (13)C3-C4-C5-C6-0.5 (2)C10-C9-N8-C7176.10 (11)C4-C5-C6-C70.3 (2)C6-C7-N8-C9-179.88 (12)C5-C6-C7-N8-179.73 (12)C2-C7-N8-C90.32 (13)C5-C6-C7-C20.05 (18)014-C13-N12-C17177.42 (16)N1-C2-C7-N80.15 (13)015-C13-N12-C111.5 (2)N1-C2-C7-N8179.68 (11)015-C13-N12-C11-177.92 (11)C3-C2-C7-C6-0.20 (18)C16-C17-N12-C11-178.09 (13)N1-C2-C7-C6-0.20 (18)C16-C17-N12-C11-178.09 (13)N1-C2-C7-C6-0.20 (14)C16-C17-N12-C11-178.09 (13)N1-C2-C10-C1179.34 (14)C10-C11-N12-C1783.38 (16)	C9-C10-C11	111 88 (10)	C9 - N1 - H1	126.2
Color HintHollHollHollC11—C10—H10A109.2C9—N8—C7104.90 (10)C9—C10—H10B109.2C13—N12—C17113.11 (12)C11—C10—H10B109.2C13—N12—C11124.01 (11)H10A—C10—H10B107.9C17—N12—C11122.74 (11)N12—C11—C10112.67 (10)C13—O15—C16109.01 (11)N1—C2—C3—C4179.30 (13)C3—C2—N1—C9-179.94 (13)C7—C2—C3—C4-0.01 (19)C7—C2—N1—C9-0.55 (12)C2—C3—C4—C50.4 (2)N1—C9—N8—C7-0.69 (13)C3—C4—C5—C6-0.5 (2)C10—C9—N8—C7176.10 (11)C4—C5—C6—C70.3 (2)C6—C7—N8—C9-179.88 (12)C5—C6—C7—N8-179.73 (12)C2—C7—N8—C90.32 (13)C5—C6—C7—C20.05 (18)014—C13—N12—C17177.42 (16)N1—C2—C7—N80.15 (13)015—C13—N12—C111.5 (2)N1—C2—C7—C6-179.68 (11)015—C13—N12—C111.5 (2)N1—C2—C7—C6-0.20 (18)C16—C17—N12—C11-177.92 (11)C3—C2—C7—C6-0.20 (18)C16—C17—N12—C11-178.09 (13)N1—C9—C10—C11-97.20 (14)C16—C17—N12—C11-178.09 (13)N1—C9—C10—C1179.34 (14)C10—C11—N12—C1783.38 (16)	C9—C10—H10A	109.2	C_2 —N1—H1	126.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-C10-H10A	109.2	$C_2 = N_1 = M_1$	104 90 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—H10B	109.2	C13 - N12 - C17	113 11 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-C10-H10B	109.2	C13 - N12 - C11	$124\ 01\ (11)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H10A—C10—H10B	107.9	C17 - N12 - C11	122.01(11) 122.74(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N12-C11-C10	112.67 (10)	C13—O15—C16	109.01 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C3—C4	179.30 (13)	C3—C2—N1—C9	-179.94 (13)
C2-C3-C4-C5 0.4 (2) $N1-C9-N8-C7$ -0.69 (13)C3-C4-C5-C6 -0.5 (2) $C10-C9-N8-C7$ 176.10 (11)C4-C5-C6-C7 0.3 (2) $C6-C7-N8-C9$ -179.88 (12)C5-C6-C7-N8 -179.73 (12) $C2-C7-N8-C9$ 0.32 (13)C5-C6-C7-C2 0.05 (18) $014-C13-N12-C17$ 177.42 (16) $N1-C2-C7-N8$ 0.15 (13) $015-C13-N12-C17$ -2.03 (17)C3-C2-C7-N8 179.62 (11) $014-C13-N12-C11$ 1.5 (2) $N1-C2-C7-C6$ -179.68 (11) $015-C13-N12-C11$ -177.92 (11)C3-C2-C7-C6 -0.20 (18) $C16-C17-N12-C11$ -177.92 (11)C3-C2-C7-C6 -0.20 (18) $C16-C17-N12-C11$ -178.09 (13)N1-C9-C10-C11 -97.20 (14) $C16-C17-N12-C13$ -101.12 (15)C9-C10-C11-N12 68.0 (1) $C10-C11-N12-C17$ 83.38 (16)	C7—C2—C3—C4	-0.01 (19)	C7—C2—N1—C9	-0.55 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—C5	0.4 (2)	N1—C9—N8—C7	-0.69 (13)
C4-C5-C6-C7 $0.3 (2)$ $C6-C7-N8-C9$ $-179.88 (12)$ $C5-C6-C7-N8$ $-179.73 (12)$ $C2-C7-N8-C9$ $0.32 (13)$ $C5-C6-C7-C2$ $0.05 (18)$ $014-C13-N12-C17$ $177.42 (16)$ $N1-C2-C7-N8$ $0.15 (13)$ $015-C13-N12-C17$ $-2.03 (17)$ $C3-C2-C7-N8$ $179.62 (11)$ $014-C13-N12-C11$ $1.5 (2)$ $N1-C2-C7-C6$ $-179.68 (11)$ $015-C13-N12-C11$ $-177.92 (11)$ $C3-C2-C7-C6$ $-0.20 (18)$ $C16-C17-N12-C13$ $5.96 (19)$ $N8-C9-C10-C11$ $-97.20 (14)$ $C16-C17-N12-C11$ $-178.09 (13)$ $N1-C9-C10-C11$ $79.34 (14)$ $C10-C11-N12-C13$ $-101.12 (15)$ $C9-C10-C11-N12$ $68.0 (1)$ $C10-C11-N12-C17$ $83.38 (16)$	C3—C4—C5—C6	-0.5 (2)	C10—C9—N8—C7	176.10 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6—C7	0.3 (2)	C6—C7—N8—C9	-179.88 (12)
C5-C6-C7-C2 $0.05 (18)$ $O14$ -C13-N12-C17 $177.42 (16)$ N1-C2-C7-N8 $0.15 (13)$ $O15$ -C13-N12-C17 $-2.03 (17)$ C3-C2-C7-N8 $179.62 (11)$ $O14$ -C13-N12-C11 $1.5 (2)$ N1-C2-C7-C6 $-179.68 (11)$ $O15$ -C13-N12-C11 $-177.92 (11)$ C3-C2-C7-C6 $-0.20 (18)$ $C16$ -C17-N12-C13 $5.96 (19)$ N8-C9-C10-C11 $-97.20 (14)$ $C16$ -C17-N12-C11 $-178.09 (13)$ N1-C9-C10-C11 $79.34 (14)$ $C10$ -C11-N12-C13 $-101.12 (15)$ C9-C10-C11-N12 $68.0 (1)$ $C10$ -C11-N12-C17 $83.38 (16)$	C5—C6—C7—N8	-179.73 (12)	C2—C7—N8—C9	0.32 (13)
N1C2C7N8 $0.15(13)$ $015C13N12C17$ $-2.03(17)$ C3C2C7N8 $179.62(11)$ $014C13N12C11$ $1.5(2)$ N1C2C7C6 $-179.68(11)$ $015C13N12C11$ $-177.92(11)$ C3C2C7C6 $-0.20(18)$ $C16C17N12C13$ $5.96(19)$ N8C9C10C11 $-97.20(14)$ $C16C17N12C11$ $-178.09(13)$ N1C9C10C11 $79.34(14)$ $C10C11N12C13$ $-101.12(15)$ C9C10C11N12 $68.0(1)$ $C10C11N12C17$ $83.38(16)$	C5—C6—C7—C2	0.05 (18)	O14—C13—N12—C17	177.42 (16)
C3-C2-C7-N8179.62 (11)O14-C13-N12-C11 $1.5 (2)$ N1-C2-C7-C6-179.68 (11)O15-C13-N12-C11-177.92 (11)C3-C2-C7-C6-0.20 (18)C16-C17-N12-C13 $5.96 (19)$ N8-C9-C10-C11-97.20 (14)C16-C17-N12-C11-178.09 (13)N1-C9-C10-C1179.34 (14)C10-C11-N12-C13-101.12 (15)C9-C10-C11-N1268.0 (1)C10-C11-N12-C1783.38 (16)	N1—C2—C7—N8	0.15 (13)	O15-C13-N12-C17	-2.03 (17)
N1C2C7C6 -179.68 (11) O15C13N12C11 -177.92 (11) C3C2C7C6 -0.20 (18) C16C17N12C13 5.96 (19) N8C9C10C11 -97.20 (14) C16C17N12C11 -178.09 (13) N1C9C10C11 79.34 (14) C10C11N12C13 -101.12 (15) C9C10C11N12 68.0 (1) C10C11N12C17 83.38 (16)	C3—C2—C7—N8	179.62 (11)	O14—C13—N12—C11	1.5 (2)
C3-C2-C7-C6 -0.20 (18) C16-C17-N12-C13 5.96 (19) N8-C9-C10-C11 -97.20 (14) C16-C17-N12-C11 -178.09 (13) N1-C9-C10-C11 79.34 (14) C10-C11-N12-C13 -101.12 (15) C9-C10-C11-N12 68.0 (1) C10-C11-N12-C17 83.38 (16)	N1—C2—C7—C6	-179.68 (11)	O15-C13-N12-C11	-177.92 (11)
N8-C9-C10-C11 -97.20 (14) C16-C17-N12-C11 -178.09 (13) N1-C9-C10-C11 79.34 (14) C10-C11-N12-C13 -101.12 (15) C9-C10-C11-N12 68.0 (1) C10-C11-N12-C17 83.38 (16)	C3—C2—C7—C6	-0.20 (18)	C16—C17—N12—C13	5.96 (19)
N1-C9-C10-C11 79.34 (14) C10-C11-N12-C13 -101.12 (15) C9-C10-C11-N12 68.0 (1) C10-C11-N12-C17 83.38 (16)	N8—C9—C10—C11	-97.20 (14)	C16—C17—N12—C11	-178.09 (13)
C9—C10—C11—N12 68.0 (1) C10—C11—N12—C17 83.38 (16)	N1—C9—C10—C11	79.34 (14)	C10-C11-N12-C13	-101.12 (15)
	C9-C10-C11-N12	68.0 (1)	C10—C11—N12—C17	83.38 (16)

supplementary materials

O15—C16—C17—N12 N8—C9—N1—C2	-7.44 (18) 0.81 (13)	014—C13—O15—C16 N12—C13—O15—C16		177.27 (14) -3.24 (16)
C10-C9-N1-C2	-176.15 (10)	C17—C16—O15—C13		6.84 (18)
Hydrogen-bond geometry (Å, °)				
D—H…A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1····N8 ⁱ	0.86	2.08	2.8959 (13)	158.
C11—H11A…O14 ⁱⁱ	0.97	2.53	3.2876 (16)	135.
C11—H11B…O14	0.97	2.58	2.9019 (16)	100.
C3—H3…O15 ⁱ	0.93	2.73	3.3820 (17)	128.
C5—H5…O15 ⁱⁱⁱ	0.93	2.82	3.6229 (17)	145.
C6—H6····O14 ^{iv}	0.93	2.66	3.4008 (17)	137.
			1/2	

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x-1, y, z; (iii) -x+2, y-1/2, -z+1/2; (iv) x, -y+1/2, z-1/2.

Fig. 1

Fig. 2

